Word Sense Disambiguation using Statistical Models and WordNet

نویسندگان

  • Antonio Molina
  • Ferran Plà
  • Encarna Segarra
  • Lidia Moreno
چکیده

One of the main problems in Natural Language Processing is lexical ambiguity, words often have multiple lexical functionalities (i.e. they can have various parts-of-speech) or have several semantic meanings. Nowadays, the semantic ambiguity problem, most known as Word Sense Disambiguation, is still an open problem in this area. The accuracy of the different approaches for semantic disambiguation is much lower than the accuracy of the systems which solve other kinds of ambiguity, such as part-of-speech tagging. Corpus-based approaches have been widely used in nearly all natural language processing tasks. In this work, we propose a Word Sense Disambiguation system which is based on Hidden Markov Models and the use of WordNet. Some experimental results of our system on the SemCor corpus are

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Construction of Persian ICT WordNet using Princeton WordNet

WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...

متن کامل

Word Sense Disambiguation: A Case Study on the Granularity of Sense Distinctions

The paper presents a method for word sense disambiguation (WSD) based on parallel corpora. The method exploits recent advances in word alignment and word clustering based on automatic extraction of translation equivalents and is supported by a lexical ontology made of aligned wordnets for the languages in the corpora. The wordnets are aligned to the Princeton Wordnet, according to the principle...

متن کامل

Multiple Sense Inventories and Test-bed Corpora

Comparing performances of word sense disambiguation systems is a very difficult evaluation task when different sense inventories are used and, even more difficult when the sense distinctions are not of the same granularity. The paper substantiates this statement by briefly presenting a system for word sense disambiguation (WSD) based on parallel corpora. The method relies on word alignment, wor...

متن کامل

Integrating WordNet for Multiple Sense Embeddings in Vector Semantics

Popular distributional approaches to semantics allow for only a single embedding of any particular word. A single embedding per word conflates the distinct meanings of the word and their appropriate contexts, irrespective of whether those usages are related or completely disjoint. We compare models that use the graph structure of the knowledge base WordNet as a post-processing step to improve v...

متن کامل

SenseRelate: : TargetWord-A Generalized Framework for Word Sense Disambiguation

We have previously introduced a method of word sense disambiguation that computes the intended sense of a target word, using WordNet-based measures of semantic relatedness (Patwardhan et al., 2003). SenseRelate::TargetWord is a Perl package that implements this algorithm. The disambiguation process is carried out by selecting that sense of the target word which is most related to the context wo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002